Derivative of ax MCQs With Answer

Understanding the derivative of ax and related exponential forms is essential for B. Pharm students studying pharmacokinetics and drug-reaction rates. This concise guide focuses on differentiation rules for linear expressions (ax), power functions, and exponential functions like a^x and e^x, plus chain, product, and logarithmic differentiation methods. Emphasis is placed on practical applications—rate of change of drug concentration, half-life calculations, and slope interpretation—so students can apply calculus directly to dosage and concentration models. Keywords included: derivative of ax, derivative of a^x, differentiation rules, pharmacokinetics, chain rule, logarithmic differentiation. Now let’s test your knowledge with 50 MCQs on this topic.

Q1. What is the derivative with respect to x of the linear function ax (where a is a constant)?

  • a + x
  • ax
  • a
  • 0

Correct Answer: a

Q2. If f(x) = a^x with constant a > 0, what is f'(x)?

  • a^x
  • a^x ln a
  • x a^{x-1}
  • ln x · a^x

Correct Answer: a^x ln a

Q3. For f(x) = e^x, the derivative f'(x) equals:

  • e^x ln e
  • x e^{x-1}
  • e^x
  • ln x

Correct Answer: e^x

Q4. What is the derivative of f(x) = ax^n (a constant, n a positive integer)?

  • an x^{n-1}
  • a x^{n+1}
  • n x^{a-1}
  • a n x^{n}

Correct Answer: an x^{n-1}

Q5. If C(t) = C0 e^{-kt} represents drug concentration, what is dC/dt?

  • -k C0 e^{-kt}
  • k C0 e^{-kt}
  • C0 e^{kt}
  • -C0 e^{-kt} / k

Correct Answer: -k C0 e^{-kt}

Q6. The derivative of f(x) = ln x is:

  • 1 / (x ln x)
  • 1 / x
  • ln x
  • x ln x

Correct Answer: 1 / x

Q7. Using chain rule, derivative of f(x) = a^{g(x)} is:

  • a^{g(x)} g'(x) / a
  • a^{g(x)} ln a · g'(x)
  • g'(x) a^{g(x)-1}
  • ln(g(x)) a^{g(x)}

Correct Answer: a^{g(x)} ln a · g'(x)

Q8. If y = x^3 · e^{2x}, what rule best finds dy/dx?

  • Quotient rule
  • Product rule combined with chain rule
  • Power rule only
  • Logarithmic differentiation only

Correct Answer: Product rule combined with chain rule

Q9. The derivative of f(x) = a (constant) is:

  • a x
  • 0
  • 1
  • ln a

Correct Answer: 0

Q10. If f(x) = 1^x, what is f'(x)?

  • 1
  • 0
  • ln 1
  • 1^x ln 1

Correct Answer: 0

Q11. For f(x) = a^x and a = e, which identity simplifies the derivative?

  • ln e = 1
  • e^x = ln x
  • a^x = x^a
  • ln a = 0

Correct Answer: ln e = 1

Q12. Differentiate y = (a^x)^2. Which is correct?

  • 2 a^{2x} ln a
  • a^{2x} ln a
  • 2x a^{2x-1}
  • 2 a^x ln a

Correct Answer: 2 a^{2x} ln a

Q13. If f(x) = x a^x (a constant), f'(x) equals:

  • a^x + x a^x ln a
  • a^x (1 + ln a)
  • x a^{x-1} + a^x
  • x a^x

Correct Answer: a^x + x a^x ln a

Q14. The derivative of f(x) = a^{2x+1} is:

  • a^{2x+1} · 2 ln a
  • 2 a^{2x} ln a
  • a^{2x+1} ln(2x+1)
  • 2x a^{2x+1}

Correct Answer: a^{2x+1} · 2 ln a

Q15. Which differentiation technique is most useful for y = x^x?

  • Power rule directly
  • Logarithmic differentiation
  • Quotient rule
  • Integration by parts

Correct Answer: Logarithmic differentiation

Q16. If y = a^{ln x} (a constant), y simplifies to which function before differentiating?

  • x^{ln a}
  • a^x ln x
  • e^{ln a · ln x} = x^{ln a}
  • ln(a ln x)

Correct Answer: e^{ln a · ln x} = x^{ln a}

Q17. The second derivative of f(x) = e^{kx} is:

  • k^2 e^{kx}
  • k e^{kx}
  • e^{k x} / k
  • k^2 x e^{kx}

Correct Answer: k^2 e^{kx}

Q18. For pharmacokinetics, clearance rate dC/dt proportional to C gives which differential form?

  • dC/dt = k
  • dC/dt = -k C
  • dC/dt = C / k
  • dC/dt = -k

Correct Answer: dC/dt = -k C

Q19. Derivative with respect to x of f(x) = a^{x^2} is:

  • a^{x^2} · 2x ln a
  • 2x a^{x^2}
  • x^2 a^{x^2-1}
  • a^{x^2} ln(x^2)

Correct Answer: a^{x^2} · 2x ln a

Q20. If f(x) = ln(a^x), simplify f'(x):

  • x ln a
  • ln a
  • a^x ln a
  • 1 / (a^x ln a)

Correct Answer: ln a

Q21. The derivative of f(x) = ax + b (a, b constants) is:

  • a x + b
  • a
  • b
  • 0

Correct Answer: a

Q22. If f(x) = a^{u(x)} and a = 10, the derivative includes which factor?

  • ln 10
  • log_{10} e
  • 1 / ln 10
  • ln u(x)

Correct Answer: ln 10

Q23. For y = x^2 · a^{3x}, what is an element appearing in dy/dx?

  • x^2 · a^{3x} ln a · 3
  • x^2 · 3 a^{3x-1}
  • 2x a^{3x} / ln a
  • ln x · a^{3x}

Correct Answer: x^2 · a^{3x} ln a · 3

Q24. Differentiate y = a^{x} / x. Which rule is primarily used?

  • Product rule
  • Quotient rule
  • Power rule only
  • Trapezoidal rule

Correct Answer: Quotient rule

Q25. If y = x ln a (a constant), dy/dx equals:

  • ln a
  • x / a
  • a x
  • 0

Correct Answer: ln a

Q26. The derivative of f(x) = a^{x} · ln a equals:

  • a^{x}
  • a^{x} (ln a)^2
  • ln a
  • x a^{x-1} ln a

Correct Answer: a^{x} (ln a)^2

Q27. For y = (ax)^n, which method helps simplify differentiation?

  • Expand then differentiate only for all n
  • Use constant multiple and power rule: derivative = n (a x)^{n-1} · a
  • Use derivative of a^x
  • Use partial fractions

Correct Answer: Use constant multiple and power rule: derivative = n (a x)^{n-1} · a

Q28. If y = a^{x} and a < 1 (e.g., a = 0.5), f'(x) is:

  • Negative because a < 1
  • a^{x} ln a which is negative
  • a^{x} / ln a
  • Zero

Correct Answer: a^{x} ln a which is negative

Q29. The derivative of f(x) = log_a x equals:

  • 1 / (x ln a)
  • ln a / x
  • 1 / x
  • ln x / a

Correct Answer: 1 / (x ln a)

Q30. Using logarithmic differentiation, derivative of y = (sin x)^{a} (a constant) gives:

  • a (sin x)^{a-1} cos x
  • (sin x)^{a} ln sin x
  • a (sin x)^{a} cos x
  • ln a · (sin x)^a

Correct Answer: a (sin x)^{a-1} cos x

Q31. If C(t) = C0 a^{kt} models concentration growth, dC/dt is:

  • C0 a^{kt} k ln a
  • C0 k a^{kt-1}
  • k C0
  • a^{kt} / k

Correct Answer: C0 a^{kt} k ln a

Q32. The derivative of y = x · ln a (a constant) gives a slope equal to:

  • Dependent on x
  • ln a (constant)
  • a
  • 1 / ln a

Correct Answer: ln a (constant)

Q33. If y = a^{f(x)} and f(x) = ln x, dy/dx simplifies to:

  • a^{ln x} · (1/x) ln a
  • a^{ln x} / x
  • a^{ln x} ln(ln x)
  • 1 / (x ln a)

Correct Answer: a^{ln x} · (1/x) ln a

Q34. For y = e^{g(x)} where g'(x) = 3x^2, dy/dx equals:

  • e^{g(x)}
  • 3x^2 e^{g(x)}
  • g(x) e^{g(x)}
  • e^{3x^2}

Correct Answer: 3x^2 e^{g(x)}

Q35. The derivative of f(x) = a^{x} + b^{x} (a,b constants) is:

  • a^{x} ln a + b^{x} ln b
  • (a+b)^x ln(a+b)
  • x a^{x-1} + x b^{x-1}
  • ln(a b) (a^{x} + b^{x})

Correct Answer: a^{x} ln a + b^{x} ln b

Q36. If y = x / a^x, which derivative component appears after quotient rule?

  • -x a^{x} ln a in numerator
  • a^{x} in denominator only
  • ln x in numerator
  • 1 / (a^x ln a)

Correct Answer: -x a^{x} ln a in numerator

Q37. A derivative test: if f'(x) = 0 for f(x) = ax, what does that imply about a?

  • a = 0
  • x = 0
  • a is variable
  • a = 1

Correct Answer: a = 0

Q38. Differentiate y = a^{x} where a = e^k (k constant). Then y’ equals:

  • a^{x} k
  • a^{x} ln a
  • a^{x} k x
  • e^{kx} ln k

Correct Answer: a^{x} ln a

Q39. If f(x) = (a^x – 1)/x, what limit-based derivative concept may be used at x→0?

  • L’Hôpital’s rule
  • Integration by parts
  • Product rule
  • Mean value theorem only

Correct Answer: L’Hôpital’s rule

Q40. The derivative of y = a^{m x + c} with constants m,c is:

  • a^{m x + c} · m ln a
  • m a^{m x + c}
  • a^{m x} · c
  • a^{m x + c} ln(m x + c)

Correct Answer: a^{m x + c} · m ln a

Q41. For y = e^{ax} / x, which term arises after differentiation?

  • -e^{ax} / x^2 + a e^{ax} / x
  • e^{ax} / x only
  • a x e^{ax}
  • -a e^{ax} / x^2

Correct Answer: -e^{ax} / x^2 + a e^{ax} / x

Q42. Differentiate f(x) = a^{x} · b^{x} (a,b constants). The derivative is:

  • (ab)^{x} (ln a + ln b)
  • a^{x} b^{x} ln(ab)
  • a^{x} ln a + b^{x} ln b
  • (a+b)^{x} ln(a+b)

Correct Answer: a^{x} b^{x} ln(ab)

Q43. The derivative of f(x) = x^n ln a (a constant) is:

  • n x^{n-1} ln a
  • x^n / a
  • ln a
  • a n x^{n-1}

Correct Answer: n x^{n-1} ln a

Q44. If y = a^{x^3}, what is dy/dx at x = 0?

  • a^0 · 3x^2 ln a evaluated at 0 → 0
  • ln a
  • 3 ln a
  • 1

Correct Answer: a^0 · 3x^2 ln a evaluated at 0 → 0

Q45. For f(x) = ln(a^x + 1), f'(x) contains which factor?

  • a^x ln a / (a^x + 1)
  • ln(a^x + 1)
  • 1 / (x ln a + 1)
  • a^x / x

Correct Answer: a^x ln a / (a^x + 1)

Q46. If y = a^{x} with a>0, the instantaneous rate of change at x=0 equals:

  • a^0 ln a = ln a
  • a
  • 0
  • 1

Correct Answer: a^0 ln a = ln a

Q47. The derivative of f(x) = (a^x)^{b} (b constant) simplifies to:

  • b a^{bx} ln a
  • a^{bx} ln b
  • b a^{x(b-1)}
  • a^{x b} / b

Correct Answer: b a^{bx} ln a

Q48. Using differentiation, half-life t1/2 from C(t) = C0 e^{-kt} yields which relation?

  • t1/2 = ln 2 / k
  • t1/2 = k / ln 2
  • t1/2 = ln k / 2
  • t1/2 = 2 / k

Correct Answer: t1/2 = ln 2 / k

Q49. For y = a^{x} with a variable a(x), total derivative dy/dx is:

  • a'(x) x a^{x-1}
  • a^{x} (ln a · x’ + a’/a · x) — not standard
  • ∂/∂x a^{x} treating a constant
  • Use partial derivatives: dy = a^{x} ln a · dx + x a^{x-1} da

Correct Answer: Use partial derivatives: dy = a^{x} ln a · dx + x a^{x-1} da

Q50. For practical B.Pharm application, which derivative describes instantaneous rate of infusion if amount A(t) = R t?

  • dA/dt = R (infusion rate constant)
  • dA/dt = t R’
  • dA/dt = R t^2
  • dA/dt = 0

Correct Answer: dA/dt = R (infusion rate constant)

Leave a Comment

PRO
Ad-Free Access
$3.99 / month
  • No Interruptions
  • Faster Page Loads
  • Support Content Creators